BMATH MIDTERM EXAMINATION ALGEBRAIC GEOMETRY

Attempt all questions. Assume that the base field k, in all questions below, is algebraically closed. Total: 50 marks. Time: 3 hours
(1) Consider the set $X=\{(1,0),(-1,0)\} \subset \mathbb{A}_{k}^{2}$. Calculate $I(X)$. (7 marks)
(2) Let $X=Z(x y-1)$ and $Y=Z\left(y-x^{2}\right)$ both considered as algebraic subsets of \mathbb{A}_{k}^{2}. Is X isomorphic to Y ? Justify your answer. (7 marks)
(3) Describe the ring of regular functions on the open set $D\left(x-4 y^{2}\right) \subset \mathbb{A}_{k}^{2}$. (8 marks)
(4) Define a regular function on an open subset of a projective variety and prove that the only regular functions on \mathbb{P}_{k}^{n} are constants. (8 marks)
(5) State the Weak Nullstellensatz and Hilbert's Nullstellensatz. Prove that the former implies the latter. $(2+2+6=10$ marks $)$
(6) Define a morphism between two affine algebraic sets $X \subset \mathbb{A}_{k}^{n}$ and $Y \subset \mathbb{A}_{k}^{m}$. Prove that there is a natural bijection between the set of all morphisms $X \rightarrow Y$ and all k algebra homomorphisms $A(Y) \rightarrow A(X) .(2+8=10$ marks $)$

